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Abstract The error propagation for general numerical method in ordinary differential equations
ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are
presented. The various components of round-off error occurring in floating-point computation are fully
detailed. By introducing a new kind of recurrent inequality, the classical error bounds for linear multi-
step methods are essentially improved, and joining probabilistic theory the “normal” growth of accumu-
lated round-off error is derived. Moreover, a unified estimate for the total error of general method is
given. On the basis of these results, we rationally interpret the various phenomena found in the numer-
ical experiments in part | of this paper and derive two universal relations which are independent of types
of ODEs, initial values and numerical schemes and are consistent with the numerical results. Further-
more, we give the explicitly mathematical expression of the computational uncertainty principle and ex-
pound the intrinsic relation between two uncertainties which result from the inaccuracies of numerical
method and calculating machine.

Keywords: computational uncertainty principle, round-off error, discretization error, universal relation, ma-
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In part I of this 'paper[l] , we gave some new phenomena in solving numerically nonlinear
ODEs, pointed out the important influences of round-off error due to the finiteness of machine
precision on numerical calculations of nonlinear ODEs, and presented the computational uncer-
tainty principle. To explain and prove theoretically the numerical results in ref.[1] and to make
the results with general sense and with extensive application value, the error propagation for nu-
merical methods in ODEs must be investigated thoroughly and the influence of round-off errors
caused by finite machine precision must be considered. There are many works on the error analy-
ses of numerical methods in ODEs. Some classical results of discretization error can be found in
refs. [2—10] and the systematic investigations on round-off error ( mainly for fixed point ma-
chine) are made by Henrici>*! . Examining these classical results thoroughly, however, the er-
ror estimates for linear multistep methods but for one-step methods are very coarse and do not ap-
ply to the analysis in this paper. Moreover, there is no unified formula of the error estimate for
general multistep method, and there are also few works dealing with the round-off error of general
multistep method theoretically on floating-point machine. In order to make our results with wide
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applicability, therefore, we have to improve essentially the classical results and to obtain a uni-
fied error estimate for general multistep method, especially, to get the “normal” (or real) accu-
mulated growth of round-off error on floating-point machine. By introducing a new kind of recur-
rent inequality in this paper, not only the classical error bounds are improved essentially, but also
a unified estimate for the total error of general method is given. Specially, the “normal” accumu-
lated growth of round-off error on floating-point machine is derived by using probabilistic theory .
Consequently, not only the various phenomena found in the numerical experiments in ref.[1] are
rationally explained, but also the explicitly mathematical expression of the computational uncer-
tainty principle is given.

1 Basic description
Consider the following initial-value problem of the first order of m ODEs:
d ,
T = =y, y(k) = yo (1)

where the vector y = (y1, %2,y ¥m) € [a,b], and f(t,y) = (f1(t,y),£2(t,y), ",
fu(t,y) )isa given continuous vector function. Here the superseript ‘T’ represents transposi-
tion. We always assume that the vector-valued function f(¢,y) is defined and continuous on the
region S = (e, y)la <t <b,yER™ }and f(t,y) satisfies the Lipschitz condition with re-
spect to y, i. e. if there exists a constant L such that for any t€ [ a,b] and any two vectors
yiand y,,

I fCeop) = fCy) | <Ly, - yo Il . (2)
L is called a Lipschitz constant with respect to y for f(¢,y). Then the initial-value problem (1)
has a unique continuously differentiable solution y (t).

The methods and results of initial-value problems and systems of ODEs of the first order, as
are well known, are essentially independent of the number m'%). In the following we often limit
ourselves in form to the case of only one ODE of the first order and only one unknown function
(i.e. m=1). The results, however, are also valid for systems, provided quantities such as y,
fC,y), ®,0,e(t5h),r(t;h),ECt5h), TW(ts5y3h),t.(t;ysh),e(t;5h), R and z,
etc. are interpreted as vectors. Without loss of generality, we still use norm |
|+ | in suitable place. Thus, all the quantities taken by norm

A general numerical method can be written in a unified form!”]

sk + Who1Ynak-1 + ° + 0¥ = AP0y Yusis

Ynrk-15"""s ¥a3 h5 f), O0<n<N-k; (3)

y; = y(to + jh), 0=sj=<k-1,
where aj(j =0,1,**, k) are real constants which do not depend on n,a; %0,k is a fixed posi-
tive integer, yo, ¥1,°** and y;_; are known, and y; = y(¢;; h) (j=0, 1, -, N). Eq. (3)
is called the general k-step method. This method includes all common numerical methods as spe-
cial cases. When k£ = 1 we have a one-step method and in this case @ is called the increment
function of the method. If k£ > 1, we have a multistep method. Formula (3) is an explicit method
if the function @ is independent of y,, ;; otherwise, it is an implicit method. We obtain differ-
ent numerical methods for different choices of @ . For simplicity, the argument f in the function
@ will be omitted. For the sake of convenience, we define the polynomial

oi(8) = ayft + a1 8514 - 4 g (4)

instead of
are regarded as vectors.
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which will be called the characteristic polynomials of the k-step method (3) . Take k =1 in (3),
one obtains a general explicit one-step method
Yns1 = Yo + hP(tn,505h). (5)
Two particular cases of (5), Taylor series method and Runge-Kutta method, are well known. In
(3) let
@(tn’yn+k’ Ynek-15 """s Yns h) = ka( lnsks yn+k) + ﬁk_lf( lnsk-1s yn+k—l)

+ o+ ‘BOf(tn’yn)'
Then method (3) bécomes

k k
éT-O)afy"Hf = hzo)lgjf(tn&»j’ yn+j)- (6)

(6) is referred to as a linear multistep method or more precisely a linear k-step method because
the function @ depends linearly on f. (6) is explicit for 8; = 0 and is implicit for 5, 0. The
polynomials

o, (€) = ,kak + .Bk—lek_1 + 0+ P (7)
are also called the characteristic polynomials of the linear k- step method (6) . Two important spe-
cial cases of linear multistep method are explicit and implicit Adams methods.

The actual error of a numerical method for solving a differential equation or a system of dif-
ferential equations comes from two basic sources: one source is the method of approximation, that
is to say, the numerical method will not yield the exact solution of the given differential equations
(even if the calculations are carried out without rounding) . The difference

e(t3h) = y(t) - y(s5h) (8)
where y (5 h) denotes the exact solution produced by the numerical method under the given
stepsize h and is also called the theoretical approximation, will be called the global discretization
(truncation) error. The error depends on the given initial-value problem, the numerical method
used, the stepsize h and the step number n (namely ¢). The other source of error is the finite
accuracy of actual computers which causes the fact that y(¢; k) cannot be calculated exactly in
practice. Let 7(¢; h)denotes the actually calculated value of y(z; k) and be called the numer-
ical approximation. The difference

r(tsh) = y(t5h) = 7(e5h) (9)
is said to be the (accumulated or global) round-off error. The error depends not only on the given
differential equation and the numerical method, but also on the computing machine used, the
fixed or floating operations, the number system, details of programming, and especially on the
machine precision. We write the total error

E(t;h) = y(¢) - 7(t5h) = e(t5h) + r(¢5h). (10)
By the triangle inequality we find
| ECesh) ll <l eCesh) Il + Il rCesh) |l (11)

Definition 1°).  The (absolute) local (discretization or truncation) error of the k-step
method (3) at t,,,=a + (n + k)h is defined by

y(tn+k) = Yn+k> (12)
where y(¢) is the exact solution of eq. (1), and y,, ; is the exactly numerical solution obtained
from (3) by using the exact k starting values VYnsj= y(t“j;h)(j:O, 1,, k-1).

A practical definition of local error is given as follows.
Definition 2. Let y(t) be the exact solution of eq. (1). Then the quantities
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k
T.(t,y;h) = Zajy(t+jh)—hd§k(t,y;h) (13)
j=0
where @, (t,y;h) = ®(t,y(t+ kh), ,y(t);h), and
1
u(t,ysh) = 3T (e, y5h) (14)

will be called the (absolute) local discretization (or truncation error) error and relative local dis-
cretization (or truncation) error of the k- step method (3) (relative with respect to the stepsize
h) at the point (¢t + kh,y), respectively.

Remark 1. For explicit one-step methods, we write ®(t,y3h) = ®,(t,y;h).

Lemma 1. Consider the differential equation (1), let y(¢) be its exact solution, and let
® be a continuously differentiable function. For the local error (3) one has

Pl -1
y(tn+k) = Yn+k = (akI"h é;é(tn’yn+k’y(tn+k—l)""’y(tn);h)) Tk(t!y;h)’
(15)

where I is an unit matrix, ¥, , ; is a value between y(t,, ) and y,, ; if @ is a scalar function.
a
In the case of a vector-valued function @, a@( tnsFnaks¥(tnsi-1)>"»¥(t,) 5 h) is the Ja-

cobian matrix, whose rows are evaluated at possibly different values lying on the segment joining
y(tn+k) and ¥, ;-
Lemma 1 shows that T,(t,y;h) is essentially equal to the local error. Definitions 2 and 1
are therefore equivalent.
Definition 3.  The method given by (3) is called theoretically convergent if, for arbitrari-
ly fixed t€[a,bl,t=a+nh=1t,,
lime(¢3h) = 0, orlim [l y(¢) - y(z5h) || = 0. (16)

The theoretical convergence can only ensure that for h—0 the theoretical approximation
y(t;h) will approximate arbitrarily well to the exact solution y(¢), but cannot guarantee that
the numerical approximation ¥ (¢;h) converges to y(t) as h—>0. We therefore give the actual
convergence and numerical convergence.

Definition 4. The method given by (3) is called actually (or really) convergent if, for
arbitrarily fixed t€ [a,b],t=a + nh=1t,,

lhi_t'l(}E(t;h) =0, orlhi_{rg|| y(2) = 7(t5h) Il = 0. (17)
If

limr(t5h) = 0, orlimll y(¢5h) - 7(e5h) Il =0, (18)
the method given by (3) is called numerically convergent.

Obviously, the theoretical convergence (16) does not guarantee the actual convergence
(17), and vice versa . A numerical method is actually convergent only if it is not only theoretical-
ly convergent and but also numerically convergent. Conversely, the actual convergence implies
neither the theoretical convergence nor the numerical convergence.

In the investigation of the accumulated round-off error we need to introduce the following
concept of (absolute) local round-off error.

Definition 5. The (absolute) local round-off error of the k-step method (3) is defined by

y(t):y(t)+€(t;h), t = t0+jh, j=0,1,"',k—1,

k
Sla;5(i + jhsh) = hd(e, (¢ + khsh),
j=0
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"'ay(t;h);h)+€(t;h)’ n =0’1"“’ (19)
where ¥ (t3h) is the numerical approximation of the theoretical approximation y(t;h) of the ex-
act solution y(¢:h). And the quantity
5(t3h) = s(th;h)

is called the relative local round-off error of the method (with respect to the stepsize h).

(20)

2 Improved a priori bounds of discretization error

2.1 Linear multistep method
Before our discussions, we first list some classical a priori bounds of discretization error for

linear multistep methods. For this purpose, we introduce two lemmas form Henrici! 2" .

Lemma 2!%3),  Let the characteristic polynomial p, (&) satisfy the root condition, and let
the coefficients 7;(j =0,1,**) be defined by
1

= Yo+ V1€ + V260 4 o, (21)
ap + a;_1§ + 0+ aofk
then
I = Fsgllpl Yil< ®.
Lemma 323!,  Consider the non-homogeneous linear difference equation
Almsk + Ag-1Zmik-1 + °°° + QoZn
h(Br,mmsk + Be-t,mBmsk1 + " + Bo,mZm) + Am> (22)

let the characteristic polynomial p, (&) satisfy the root condition, and let
k

S UB.I<B", 1B.1<B lal=<a, N=o01,-,N, (23)

j=0
where B*, B, A are constants, and let 0 <& < | a; | ,8’1, then every solution of (22) for
which
“ Z]H sz(0)9 j=0315“"k_1
satisfies

|z, | <I*(Akzegy + nA)e™ ,  n=0,1, -, N, (24)
where
r
T 1-hBla ™V
Using the above lemmas, for the linear k-step method (6), one has the classical result:
Theorem 112*),  Let the function f(¢,y) satisfy the Lipschitz condition, and let the rel-
ative discretization error be
| zu(etrysh) | <z(h), t € [a,b], h <h,g, (26)
where 7(h) depends only on k and some constants. If (6) satisfies the condition of consistency

and the root condition, then for hlaj lﬂk IL<1and t€[¢,b], the global discretization error
of the linear k-step method (6) is

le(esh) | <T*[Akey + (t - to)z(h)]ed BU=t) (27)

where e(g) is the maximum starting-value error defined by ey = max I e |l , and
0<j<k-1

L* =T"*B*, I'* A=lagl+1 apy |+ +lagl. (25)



60 SCIENCE IN CHINA (Series E) Vol. 44

k k
* r

A= §|a,-1,3_ glﬂjl,l“ “TThiem L

Bound (27) is very coarse because the terms (¢ — ) z(h) depends on the variable ¢, and
it cannot be used to discuss the quesions in this paper. Hence, we have to improve it. As in the
bound of discretization error for one-step methods, we hope that the above term for linear multi-
step methods is independent of the variable ¢ . Moreover, we expect that the error bounds for the
general k-step method (3) (not limited to the case of linear multistep methods) can be given. To
this end, we first give a key lemma a new kind of recurrent inequality as follows.

Lemma 4. If the numbers &, satisfy inequalities of the form

—to:ﬂ,h, (Igto.

16,1 SAD, 1 &1+ mB+ Céqy, n=k,k+1,, (28)
j=0

where A, B and C are certain nonnegative constants independent of n, k is a natural number m

=n~- K, K <k an integer and £ = max I§1, and then
osjs k-1

B

—{(1+A4)" - 3
&1 <(1+ A)"N(C) gy + {A L1+ 4)™-1] 40 (29)

mB a=0

holds for n = No(K),No(K) + 1,*+. Here the function N,(x) is defined by
No(x) = {@ I x<as (30)

x, if x> a.
Proof. (30) implies

N,(x) =a, (31)
N, (x) =x. (32)

It is therefore clear that for A =0, (29) is true.

For A >0, we now prove the validity of (29) by induction. If 4 >0, for j=0,1,", k-
1, since | §1<&q),n=No(K),K <k, then m = No(K) - K, No(K) < k. From (31) and
(32) one gets

N (K)-1

| &no | SA D5 1§ 1+ mB + Cé
<(1 + ANo(K))N{(C) &) + (No(K) - K)B.

By use of the two following facts:
1+ 2) =21+ kx, (33)
where the real number x 2 - 1 and k& is a nonnegative number, and

k<(1+x)k—1

X

(34)

1)More generally, one has: If the numbers £, satisfy inequalities of the form

a-l

P&V <AD 1 &1+ (n—k+ DB+ Clqyy n =k, kal,-

j=0
where A 2 -1, B 20 and C 20 are certain constants independent of n, k is natural number and £y = max | &1, then
Osjsk-1

ZL+ )™ 21], 4 %05

1 &1 <(1+A)N(C)é&q + {
(n-k+1)B, A4=0

holds for n =k, k+1, --, where N,(C) is given by (30).
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holds for arbitrary x >0 and nonnegative number &k, we have
B
| v | S+ NON(C) e + [+ )" - 1]

Assume now (29) holds true for n (n = No(K)) . Sustituting it in the right side of (28),
and using (31) and (34), one has

N(K)-1

| &aur | SA D 1 & 1+ A{Nl(C)f(o) > 1+ A) +f D0+ Ay K- 1]}
j=0 j=N(K) j=N(K)

n

+ (m+ DB+N,(C)E) SN(C)&o| (1+ANG(K))+4 D) (1 + A)]

j=N(K)

s B[(No(K) = K) + D) (14 AV]<N(C) el (1 + A)%®
j=N(K)-K

m

FA D) (s aV]s Bla+n™®ox a4 > (14 a)-1].

j=NS(K) j=N°(K)—K

By the identical relation

A+ )+ x>, (1+x) = (1+2)", (35)
j=k
where x is an arbitrary real number and % is a nonnegative integer, one gets
B
&t | S+ AN 8 + 5 L+ )™ 1],

and (29) is thus established for n + 1. The statement of the lemma follows by induction.

Making use of the inequality 1 + x <e”, where x is arbitrary, we write (29) in the forms

Ble 1), A %05

| & | <N (C)&pe™ + (36)
mB A =0,
where A 20 and B =0.
Lemma 5. Under the conditions of Lemma 3, every solution of (22) satisfies
Iz, | < Ny(g)zgpe™ +h§* (e™ -1), n=0,1,, N, (37)

where = AI'* k,A=la;_| + - + | gl , and other constants are as in Lemma 3.
Proof. To begin with, settingy; = O for negative integer /, and from (21) one can obtain
1, 1 =0,
a1+ a1 Vit + @Yoy = {0’ 1 0. (38)
For a fixed value n and [ =0,1,***,n — k, multiply eq. (22) corresponding to m = n —
k — I by 7, defined by (21) and add them up. On the left side,
(@pzn + Qpo1Zoct + ** + @0Zui) Yo + (@iZaoy + @4_12Za 2 + " + @oZo_jo1) V1 +
+(akzn-j+ak—1zn—l-j +"'+aozn-k_j))',._k +o4 (apzy +Qp_125- +° +@020) Vuok
= aYozn + (@Y1 + @4_170)zacy + * + (@WYaoi + @1 Vaoior + 7 + @0Va2i) 2k
+ (@1 Yook + @2Vuokot + 7+ @0Va2ke1) Ziot + 7+ @0 Y20
= Zy + (@1 Vack + Q2 Vnokot + 0+ QVno2ks1)Zkot + 0+ @0YuoiZ0s
On the right side, we have
h[Bk,n—kyozn + (Bt 70 + Bronoio171) 2ot + = + (Bo,nci¥o + = + Brn_26Yk) Zn_k
+ 0+ Bo,0¥n-r20) + Au_iYo + An_i1V1 + 0+ AgVasi-
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Taking norms, and using (23) and (25), we get
n-1
Izl <kl ap 1™ Iz, |l + ATB* D5 2z | + (n = k + 1)TA + ATkz).

j=0
Solving I Z, I, we get

n-1
[z Il <hL* D 1zl + nl'* A + AT kz(gy.
j=0
From Lemma 4, it immediately follows that

»

Fz Il <N (p)ze™ + A_(em 1), n=0,1,, N

hB*

The lemma is proved.
Lemma 5 indicates that bound (24) has been essentially improved, because the term A/
(hB* ) in (37) rather than the term nA in estimate (24) is independent of the variable ¢, = to

+ nh . Bound (37) can still be improved a little further. According to the proof of Lemma 5, we
find

k-1 n n-k
Z, = ZAj’an + h Z Bj’an + Z/\jyn_k_jy (39)
j=0 j=0 j=0
where

J
Ajn = D005 notejs J=0,1,,k-1, k<n<N,
j=0
J
2,31;_]“', n-k-j¥js J=0,1, -, k-1;
j=0

E+1,k+2,,n-k; k<ns<N (40)

k
By, = Elgj,n—]—jy]—k+j’ J
j=0

n-J

D Bimesiitrcieyy J=m—k+l,n-k+2, <, n.
j=0
And then putting
a= max | A;,|, b= max |B;,|, B = max|B,.l, (41)
0 Js k-1 OgJg N Ogsng N
k<asN ksng N

one obtains
I zo | <BB 1 ap 17 Iz, | + kb D,z + (n = k + 1)AT + akz(q),
j=0
where z(g) = max | z || . From Lemma 4, we have
0gjgs k-1

Lemma 6. Let the polynomial p, (&) satisfy the root condition, and let 0 < h < ﬂ'l
lag!, then every solution of (22) satisfies

Iz | <N (g)zepe™ + %(e"hb/c -1, n=0,1, -, N, (42)
where 9 = ak/c, c=1-hB8layl "',a,b and B are given by (41).

Furthermore, setting
d = max (a;'B..)> (43)
Ogng N
one can prove

Lemma 7. Let the polynomial p, (&) satisfy the root condition, and let hd <1 and h =
0, then every solution of (22) satisfies
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Iz, | <Ny (p)zgye™ + ’2—5(&“’“’ -1) n=0,1, -, N, (44)
where 9= ak/c” ,¢" =11-dhl,a and b are given by (41), and d is defined by (43).

On the basis of the above lemmas, we can now make essential improvement for the estimate
(27) of linear multistep methods .
Theorem 2.  Under the conditions of Theorem 1, if Ala; '8 | L <1 and t € [¢,,5],
the global discretization error of linear k-step method (6) satisfies
eLBT (-1} _
BL
for h <hg, t—to=nh, n=0,1, -, where €9 = max | e | ,p=Ar"k,A=la,_,| +

-1

le(esh) | <N (p)e@e™ =% 4 z(h) (45)

** + lagl and other constants are as in Theorem 4.
Proof. We subtract linear k- step method (6) from the corresponding relation

Ea,yuw) = hzﬁ,f(tw,y(tw)) + by Ctary(2a) 5 h)

j=0

satisfied by the exact values y (¢, ., J) Writing e; = y(1;) - y] ,j=0,1,,and putting
FCy(4)) —f( ti»y;) = Lg

one obtains

k k
Z;aje,w- = hZ;BjL]er + hr, (t,, y(t,)5h). (46)
i= j=

In view of the Lipschitz condition, | L <L(j=0,1, ). Applying Lemma 5 to (46) with 3
=e¢, zo) =€y, A=ht(h), B*=BLand L" = B*I"" ,we have
LBl _

BL ’
where p= A" k,A=la,_| + -+ lagl. Let t€[19,b],t,=to+ nh=1t, n =0 is an in-
teger. From e(t;h) = e, ,it follows that

| e, | ﬁNl(v)e(o)enhwp‘ + 7(h)

. LBI“(z—to) _
I eCesh) | S M eel™ ) 4 2(h) =1

for h <hg, t - to=nh, n=0,1 . The theorem is proved.

Assume that the exact solution y(¢) has a continuous derivative of order p + 1 for t € [ a,
b], for the linear k-step method (6) of order p, one has

| zCe,y3h) | <Ch.

Hence, (45) becomes
eLBF'(t-to) -1
BT A (47)

Theorem 2 indicates that our aim to remove the variable ¢ from the terms (¢ - to) (k) in
(24) has been accomplished. Estimate (45) , however, can be improved a little further by use of
Lemma 6.

Theorem 3. Under the conditions of Theorem 1, if Ala;'B | L <1 and t € [ ¢, b,],
the global discretization error of linear k-step method (6) satisfies

Lb(t—to)/c _
| e(esh) 1 <N(p)eqe? =% + (k) I'(e 1)’
/€ 5

| eCesh) |l le(ﬂ)e(o)eLBP‘(t_to) + Ch?

(48)
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for h <hg, t —to=nh, n=0,1, -+, where e(o)=0magtl|| ejll ,p=ak/c,c=1-h
sjg k-

la; B! L,a and b are given by (41).

Now we need to determine the numerical values of the constants C, a, b, ¢ and I" in
(47) or (48) for some special methods. For a number of special methods such as the explicit and
implicit Adams methods and the methods based on differentiation, we have

C=CiMy,y, (49)
where C, ., is an error constant (for these methods ¢,(1) =1) . For all methods based on numer-
ical integration, the characteristic polynomial p, (&) = &% — €79, where 1 < g <k; therefore

ﬁ: 1+ &7 4 62 4 -,
It follows that | 7,1 <1, showing that I" = 1 for those methods. And for those methods, from
(39) and (41) one finds a = 1. For the explicit and implicit methods, since 7, =1 for [ = 0,1,
*+, the numerical numbers b in table 1 are readily obtained by (40). For explicit methods we

have 8, =0, and hence ¢ = 1. Since a; =1 for the implicit methods based on numerical integra-
tion, c=1-hIBIL.

Table 1 Constants b for the Adams methods

P 1 2 3 4 5 6
- 3 23 55 1901 6336
Explicit Adams methods & 1 2 12 % 720 1440
- 13 28 897 1902
Implicit Adams methods b 1 1 2 2 720 1440
Writing
-1
d = sup (akﬁL(t,y)), (50)

(t,y;R)ES
a
where L(t,y) = 3y f(t,y), we can prove the following theorem by virtue of Lemma 7.

Theorem 4. Under the conditions of Theorem 4, if hd <1, and t € [¢y,b], the global
discretization error of linear k-step method (6) satisfies

F(eLb(t—to)/c _ 1)

Il eCesh) | <N (9)e@e =% + (k) oL , (51)
for h <hg, t—to=nh, n=0, 1, -+, where e(0)=osr?3xk_l|| e | ,p=ak/c¢*,c" =11-

dh|,a and b are given by (41), and d is defined by (50) .

2.2 General k-step method

Now we give the unified form of error estimate for general k-step method (3) .

Theorem 5. Consider the initial-value problem (1) having the exact solution y (¢) for
t€[a,b]. Let the function ®,(¢, y 3 h) satisfy the Lipschitz condition, i.e. there exist con-
stants hg and L such that

k
” Q(t’ Yo yk—l""’y();h) - Q(t,y; 9}’;:—1’"'99’0* ;h) ” sLZ ” Yi — yj* ”
j=0

(52)
forall t€[a,b], 0<h <h,, yi» ¥j €R, and f€ C'[a,b] and let the relative discretiza-
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tion error be
I z(e,ys50) | <z(h), t € [a,b],h <h,g, (53)

where (k) depends only on h and some constants. If (3) satisfies the condition of consistency
and the root condition, then, for arbitrary h < hgand all tE€ [ty,b],a <t9,t — to= nh, the
global discretization error of general k-step method (3) will be
eHl -t _ g

kL ’
where e (g) is the maximum starting-value error defined by e () = ,max I el , p=Ar"k,

A=lay_il+ - +lagl,I*" =T/(1-hla;'t L), = sup |71 <o,y(j=0,1, )

J=0,1,

leCesh) | <N (p)eqe™ =% + (k) (54)

are given by (59) below, and L, is defined by (21).

Proof. From (13) and (14) one finds that y(t,,;) = y(¢, +jh) (j=0, 1, ,k-1)
satisfy

Tk (tni) + anupo1y Conninr) + 00 + @y (2,)
= h®(t,, ¥ (o), y(t,) k) + by, (55)
where 7., = 7;,(¢t,,y(t,); h). Subtracting (3) from (55), writing €= y(tn“-) = Yn+js
Yurj=¥(tas;sh)(j=0,1,",k~1), we have
Anyknsk t Anik-1€nip-1 + 77 + ape n

= h(D(t,,y(tnsr)s s y(ta)sh) = @Ctns Ynsk> s ¥nsh)) + hry p. (56)

Setting
D(tnsy(tasi) s 57 () 5h) = @Ctns ynas™ s yas h)
= Q(tn’ynﬂc t Cniks” Y0 + en;h) - @(tn’yn-rk"“’yn;h)
= Ly n€erk + Lio1,n€nii-1 + *°* + Lo nen- (57)
Using (57), (56) can be replaced by
Ansknsk + Anik-1€nik-1 + °°° + Qpey = h(Lk,nelH-k + Ly_ynnikor + 0
+ Lo, qen) + hy . (58)
In view of the Lipschitz condition, | L; ;| <L(i=0,1,,k,j=0,1,-"). And put
Lk = ol:lﬁgvl Lk,j |, N = (b - to)/h. (59)

By Lemma 5 we take zi=¢€,20)=¢€@,A=ht(h),B* =kL and L* = B* I'" . Tt follows
that

e eI _ g
I e, |l <N (79)e@e" + z(h) L
Let t€[t9,b],t,=to+nh=t,n =0 being an integer. Since e(t;h) = e,, we have

. kII"(t—to) _
le(e;h) Il <N (p)ewe =% 4 z(h) E—E——l

for arbitrary h < hgand all € (1o, b], @ X 1o. The theorem is proved.

It is easy to see that both the a priori bound of global discretization error for one-step meth-
ods and (45) of linear multistep methods are the special cases of (54). That is to say, estimate
(54) is a unified form of the global discretization error in all k- step methods. For one-step meth-
ods, k=1,A=1, L, =0, I"'=1, I"'* =1 and Nl(q) =1. So in this case (54) is identical
with the a priori bound. If we let kL = BL or bL/I" (note that the two L here have different

n=0,1,--,N.
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senses) and L, = | 8;| L then (54) is the same as (45).

Assuming that method (3) is of the order p, we have

| o(e,ysh) I < CH.

Hence
W (e-t) _

kL
Different methods of the same order have different global discretization errors; they are distin-
guished by the constant C.

I eCosh) | <N (p)ee™ =% + Ch? & (60)

3 Improved bounds for the accumulated round-off error

To discuss round-off error on floating-point machine, let us first investigate the various com-
ponents of round-off error. Without loss of generality one assumes that the quantities h , 2o, ¢, a;
are exact in the process of computation (i.e. no round-off error). Then

§() = Ay(1)), ¢ =to+jh, =00,k -1,
k-1

ag (¢ + khsh) + 8] D 01 o;7 (¢ + jhsh)]
j=0

~ ALk - (B Ce,7 (e + khsh),,5(e3h)sR))]} = 0
n=0,1,, (61)

where the notation fl(x) denotes a floating-point rounded value of x. Therefore the local round-
off error reads

k-1
e(tsh) = [ D) a7(t + jhsh) = h®(e,5(t + khsh), =, 7(s3h)5h)]
=0 [
- A{ D 00a;7 (e + jhsh)] - filh « (D (e, 57(t + khsh), -,
j=0
7(e5h)3hN 1},
and can be regarded as the sum of the following components:

e(t;h) = o‘(t;h)+7rj(t;h)+7r(t;h)+p(t;h), (62)

where

o(tsh) = { D 0la7 (e + jhsh)] = ALk - A(B(e, 7t + khsh),o,7(15h)5h))]}

- ﬂ{iﬂ[aﬂ(t +jhsh)] - filh - A(D(e,7(t + khsh),
"',?(;—;h);h))]}, (63)
7 (t3h) = a7 (2 + jhsh) - (7 (e + jh3h)),  j = 0,1,k - 1,(64)
x(t3h) = Lk« A(D(¢,7(t + khsh),,7(t;h)5h))]

- [h-(D(t,7(t + khsh),,57(t5h);h))], (65)
pu(tsh) = b+ [(®(,7(t + kh3h),-,7(t5h)5h))
—@(t,i(t+kh;h),"',y(t;h);h)]. (66)

The quantity o(t; h) is called the dominant (or addition) rounding error in the floating-point

k-1
round-off of the addition 2 flla; (¢ +jhsh) ] - ALA-A(P(s,7 (2 + khsh), -, 57(t5h);
j=0
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R, m;(t;h) and 7 (t;h) the rounding errors due to the rounding of the product ;7 (t + jhs
h) and h-f(D(¢,7(t + kh;h),,7(t5h)5h)), respectively, u(t;h) the rounding er-
rors caused by the inaccuracy of the evaluation of the function @. Normally, in practice, the
stepsize h is so small that 7 (t;h) and ;z(t;h) << o(t;h). One thus has e (¢3h) ~a(t;h)
+ rrj( t3h). And for conventional numerical methods such as all one-step methods and all linear
multistep methods based on numerical integration, ﬂ:}»( t3h) =0, i. e. the local round-off error
is determined primarily by the addition rounding error ¢ (¢; h). This is why o (t3 k) is called
the dominant rounding error.

Even if the quantities h, to, ¢, a; cannot be represented exactly in computer (i.e. they
are rounded to the corresponding machine numbers), we have still the same conclusions! .

Under the sole assumption that

| ensrll e (n=0,1,), (67)

where € is a constant, one has
Theorem 6231,  Let the function f(t,y) be continuous and continuously differential for
t€[la,b] and satisfy the Lipschitz condition, and if the local round-off errors satisfy (67),

then the accumulated round-off error is expressed as
I r(esh) | <7 [Akry + (2 = 1) 5|2 2010, (68)
where r(g) is the maximum starting round-off error defined by (o) = ,max I rll e €lt0,b],
<jsk-

a <igand ¢t - ty= nh, and other constants are defined as in Theorem 1.

A priori estimate (68) has the same shortcoming as bound (27) for the global discretization
error. Following the way to improve the global discretization error estimate, for the influence of
round-off error in linear k-step methods, we have

Theorem 7. Under the conditions of Theorem 6, if hla; '8 | L <1 and t € [19,5],
then the accumulated round-off error of linear k-step method (3) is

B eLBI""(z—tO) -1
h BL

| 7; I , and other constants are as in

L r(esh) | < N (p)rege™ 97 (69)

for h < hg, t —to=nh, n=0,1,+, where r) = max
Osjsk-
Theorem 2.

Theorem 8. Under the conditions of Theorem 6, if hla; B 1L < 1 and t€ [ tok, b:1,
then the accumulated round-off error of linear k-step method (3) is

~ . € F(eLb(t—zo)/c _ 1)
H T(t;h) “ <N1(17)r(0)eu’(‘ to)/ + 71—— oL

for h <hg, t-to=nh, n=0,1, -+, where r(y = max | r; |, the other constants are as in
O<jsk-1
Theorem 3.
In fact, subtracting (61) from (6), writing ri=y—v%,j=0,1,", and setting
fCyoy) = fC,5) = Ly,

with the Lipschitz condition, | L;| <L, one gets

1

(69)

1) Li Jianping, Computational uncertainty principle in nonlinear ovdinary differential equations and two universal relations, Institute of
Atmospheric Sciences, Chinese Academy Sciences, Postdoctor Research Summing-up Report, 1999, 174.
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k k
Eajrn”- = hEBijrn+J - €ntk- (70)
j=0 j=0

An application of Lemma 6 to this relation with z; = r;, A =eI’, b=bL, p=ak/c,c=1-
hiaj '8! L and z(o) = r(o) yields Theorem 8.

Theorem 9. Under the conditions of Theorem 6, if hd <1 and t € [to,b], then the ac-
cumulated round-off error of linear k-step method (37) is
¢ P(eLb(t-zo)/c' _ 1)
h bL

for h <hg, t—-to=nh, n=0,1, *, where r(g) = max I i I| ', and other constants are as
o k-1

| r(esh) | éNl(rz)r(o)e”’(“‘o)/”“ + (711)

in Theorem 4.

For the general k-step method, one has a unified result as follows.

Theorem 10. Let &, (z,y;h) satisfy (52) . If the local round-off error satisfies the sole
assumption

leCesh) Il <e, (72)

then the accumulated round-off error of the general k-step method is
ekLl"“(t—:o) -1

kL ’

where r(g) is the maximum starting round-off error defined by r(o) = max I r Il , and other pa-
Ogjg k-1

I rCesh) I S Ni(p)r@et™ @0+ & (73)

rameters as in Theorem 5.

Clearly, bound (73) is an extension of (69) . The essential result contained in (73) is that
the accumulated round-off error 7(¢; k) is of the order of A~ 1(i.e. it has the same order as the
relative local round-off error 8 = €/h) and that (73) does not depend on the constants C and p
which are typical characteristics for the global discretization error e(t3h) of the method.

The bounds for the accumulated round-off error given above are derived under the sole as-
sumption that all round-off errors accumulate at their maximum values, thus although theoretically
valuable (e.g. for the results to be derived below) , these estimates vastly overestimate the actual
round-off error. In order to get the real estimate for the round-off error, therefore, the appraisal
must be carried out according to the “normal” growth of the round-off error. And to this end, we
must use the probabilistic theory of round-off errors. Using the probabilistic theory, Henrici! >
examined round-off errors on fixed point machine in great detail, and his many results are still
suitable for the cases of floating point machine. Before we carry out the statistic treatments for the
round-off errors, we must make an important hypothesis that the local round-off errors are inde-
pendently random variables with the distribution F (x). Additionally, in order to simplify the
proof by a large margin and keep the correctness of the final result unchanged, we also assume
that the accumulated round-off errors r,(n =1,2,*"*) are independent (in fact, even if no hy-
pothesis is made, the result are the same except the proofs becomes very complexl)) . As men-
tioned above, the dominant rounding error has most significant contribution to the local round-off
error on floating-point machine and if neglecting other round-off errors, then the local round-off
error ¢, is of order uy,, where u = ¥/10=0.5x 107", 7 is the machine precision and n the
significant digit. Let E (&), D(&) represent the expected value and the variance of the random

1) see footnote 1) on p.69.
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variable &. It is easily proved that
Theorem 11. If the local round-off error ¢, is an independent random variable, then

E(€n+1) = 0, (74)
D(e,,1) = %(uy,,)z. (75)

Lemma 8. Let the characteristic polynomial p, (&) satisfy the root condition, and let the
coefficients 7;(j =0,1,-) be defined by
1

= Fo 4 7 o8 4 e, 76
ai+a%¢_1€+"'+a%§k Yo+ 71§ + 726" + (76)
then
I = su I};j|< ® .,
J=U,1,"
Following Henrici’s treatment, we write the round-off error in the form
ro= 25dn g1 (77)
I=k
where r;=0,i=0,*,k -1,d,, are undetermined. For linear k-step method, d,,; satisfy
k k
Eajdn-i-j,l = hzﬂjl‘nq-jdn-(-j,l’ Il =k, ,n, (78)
R j=0 ;:0
Z%dm,ma = hZBjLn+1dn+j.n+j-19J =1,,k-1, (79)
j=J i=1J
akdn+k,n+k =14+ h:BkLn+k' (80)

Based on the above assumptions, from (70) it follows that
k k
2D (ra,;) = 2k 2, BLD(r,,;) + 03,1 + OC(h),
j=0 j=0

where 02, = D(¢,,;). Thanks to Lipschitz condition, | Ll <L, and by use of Lemma 5 and
r;i=0,i=0,"",k -1, one has

g% i _

D(r,) <(1+ 0(h)) Y T 2Bl
where ¢ = max aj,f'* =I'/(1- h31a;1 ') . Thereby we have

kgjgn
Theorem 12. If the local round-off errors are independent random variables, for the lin-
ear k-step method (6) , the accumulated round-off error is a random variable of which the ex-
pected value is zero and the variance satisfies
o2 2B (t-1)) _ q
D(r(t3h)) <1+ OCh)) F- ~——5p——
In a similar manner, we have
Theorem 13. For the general k-step method (3), let @, (t,y;h) satisfy (52). If the
local round-off errors are independent random variables, the accumulated round-off error is a ran-
dom variable whose expected value is zero and whose variance satisfies
2 2kll~"“(t—to) -1

c” e
where ¢? = maxD(sj) = kmax(uyj)2/3,1~"* =f’/(1 - hlagl ‘lLk),Lk, as in Theorem 5.

ksjsn

(81)
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This result shows that the “normal” growth of accumulated round-off error is characterized

h—1/2

by the standard deviation of the random variable r(¢;h) and is of the order of , which is

by a factor k'’ better than the theoretical upper bound given under the sole assumption. In the
following, the higher-order minor term O (k) will be neglected, and then the bound for the accu-
mulated round-off error obtained by use of the probabilistic theory is

R (e-t)
I r(esh) N ~ o2 -

J2REL

4 Computational uncertainty principle

In the light of the error estimates given above, the various phenomena observed in part I of

this paperm can be interpreted. If the starting values are exact and there are no initial round-off
errors, for the general k-step method of order p, with the above results, we can easily prove that
the total error satisfies

Hmnmn=HAHM+AHMHsawmm=cuﬂwwgﬁymw

where C(1t) = eCIt=1%) /. [ C, is the time function, P =max("*, %), C=./2C,,Cisa
constant depends on methods, Cj a constant depends on ODEs, o = max u Iy Ce) A3,

w=7/10=0.5%10"" where 7 is the machine precision and n the number of significant digit,
C; = L for one-step methods, and C; = BL or bL/T for linear multistep methods. For the gen-
eral k-step method, Cj = kL. For the Taylor series method, the explicit and implicit Adams
methods, C = C,, 1M, where C, .1 is the error constant, M, = ‘e“[‘.?’f I y(””)(t) Il . One

easily obtains N
Theorem 14. E (k) is minimized while

)1/(p+0.5)

h=H£( : (84)
2pC C

This indicates that there exists an optimal stepsize H because of the finiteness of machine preci-
sion, i.e. there exits a total error ( corresponding to H) . That is why there exist OSs observed in
the numerical experiments in ref. [1]. The round-off error reduces as the machine precision in-
creases, so from (84) OS correspondingly becomes smaller. The smaller the C, the greater the
H will be. The higher p, the larger the H. These explain the results in ref. [1]. OS increases
as the order of method increases, OS in double precision is smaller than that in single precision,
and OSs of the Taylor series and implicit Adams methods are bigger than those of the explicit
Adams methods with the same order. Besides, if y ()EC®[a,b](tE[a,b 1), then from
(84) H>1as p—>®. '

Theorem 15. Integrating an ODEs with the same numerical method of order p in two ma-
chine precisions 7, and 7, with n; and n being significant digits respectively (y=5%x10"",
¥,=5%10""™, n; < ny), we have the ratio of their 0Ss Hyto H,

H An
=L _ q0p+03, (85)

l=H2—

where An = n,— ny.
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This verifies the universal relation of I found in ref. [1]. This relation suggests that [ de-
pends only on the order of method and the machine precision (i. e. the significant digits) and is
independent of the types of ODEs, initial values and numerical schemes. Therefore OS with any
machine precision can be determined in the light of the relation provided that OS under a certain
machine precision is known. If n, and n, are fixed, [->1 as p—> % . Thus, once the machine
precision is given, the best degree of accuracy which can be achieved for the numerical solution
obtained by a numerical method is determined entirely. And the best accuracy is corresponding to
the optimal stepsize. From (4) we have the following formula of the total error for the OS H:

c 1
IEGm |~ e 2=(1+5). (86)
(86) indicates that the error decreases as H or p increases, and decreases as o (i.e. 7) de-
creases. If the error tolerance & > 0 is given, the integration time when the error determined by
(86) increases, the error tolerance is just the maximally effective computation time (MECT) T
(T=1t-1ty), namely

M . (87)
_ o(1+1/2p)
Obviously, MECT T increases as H or p increases, and increases as o(i.e. 7) decreases. This
explains the results in ref. [1]: MECT in double precision is longer than that in single preci-
sion, and MECTs of the RK, Taylor series and implicit Adams methods are longer than those of
the explicit Adams methods with the same order.

Theorem 16. With the same numerical method of order p in two machine precisions 7

and 7,(¥, 2 7,), let the corresponding MECTs be T, and T, respectively, the ratio of the time
functions C(T;) to C(T,) is

C(T) =

C(T,)
k=t =V (88)
It is another universal relation. From this relation, we have
AT = C - plnl, (89)
where AT = T, - T,,C = (C ") "' As p—>®, k—>7,/7,=10*", limC "'AT = Anlnl0. In

=

two precisions in ref. (1] (ny=7,n,=16,An=9), limC "'AT = 9In10. This explains the

-
result in ref. [1] that the difference between MECT in double precision and in single precision
tends to a fixed value with the increase in order p.

The above theoretical analyses suggest that the phenomena found in the numerical experi-
ments in ref. [1] can be fully explained with round-off error considered. Furthermore, on the
basis of them, we will give the mathematical expression of the computational uncertainty principle
presented in this paper. To this end, we express EasE=é+7, where é = Ch?,F = 0/Ch,
and express ¢ in terms of the machine precision ¥ as o = C,Y, here C, = Inax lyCe) 1l /7

1043 is a constant. &, representing the essential part of the global discretization error e(¢;h),

is a measure of uncertainty due to the imperfection of numerical methods themselves; 7, repre-

senting the essential part of the accumulated round-off error r(t;h), is a measure of uncertainty

due to the inherent inaccuracy of digital computers, and E is the sum of the two uncertainties.
Theorem 17. If the machine precision is finite, E will not tend to zero

é +7=2Cphp, (90)
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where C, = (1+2p)[C(C,y/2pC) 2 ]VCr*D,

This shows that no matter how small the stepsize is, the total error will not be arbitrarily
small unless the machine precision ¥ 0. The global discretization error trends to zero as the
stepsize h—0 without taking the round-off error into account, and in this case, the numerical so-
lution is theoretically convergent. In practice, however, the round-off error due to finite accuracy
of calculation machine is not avoidable, so that the total error will initially decrease as stepsize
decreases and the discretization error decreases, and then increases as stepsize decreases further
and the round-off error becomes more and more significant (the turning point where the total error
becomes increasing is simply corresponding to OS) . Therefore, the numerical solution is theoreti-
cally convergent as h—0, but not numerically convergent if we use finite accuracy in calculation.
In other words, the theoretical convergence and the numerical convergence, generally, cannot
take place simultaneously at the finite machine precision. That is to say, the numerical solution is
not actually convergent in practice as h—>0. In order to get more precisely numerical solution,
we have to add the machine precision in the computations as stepsize decreases. Further, we get

Theorem 18. Let & * = &'/??, then

e" o F = hy, (91)
where %, = )’C,,CVZP/& .

This is simply the computational uncertainty relation, which is the expression of the well-
known uncertainty relation!!! 1) of quantum mechanics in numerical calculation. It indicates that
the global discretization error due to numerical method and the accumulated round-off error due to
calculation machine are two “adjoint” variables; they cannot decrease to zero simultaneously, and
the smaller one of the two uncertainties, the greater will be the uncertainty of the other adjoint
variable . As there exists an inherent relationship between the two uncertainties , it naturally caus-
es limitation in the width of interval of effectively numerical solution. This is at the bottom of the
inexorable existence of MECT. That is to say, if one fixes on the error tolerance J > 0(i.e. the
numerical solutions which are less than the tolerance are acceptable) , there is surely MECT T,
so the numerical solutions in the interval [0, T] satisfy the requirement of the tolerance and pre-
sent the exact solutions in the interval very well, and the exact solutions beyond the interval can-
not be determined by numerical methods. The computational uncertainty principle therefore gives
a certain limitation to the calculated ability under the finite machine precision.

5 Conclusion and discussion

On the basis of the classical results of error analysis for numerical methods in ODEs, the er-
ror propagation for the general numerical method in ODEs is dealt with, and the shortcomings in
the classical results are pointed out: According to the properties and characteristics of the prob-
lems discussed, apart from the traditional concept of convergence (namely the theoretical conver-
gence in this paper) two new concepts of convergence are presented: the numerical convergence
and the actual convergence. And the various components of round-off error of general numerical
method on floating-point machine are fully detailed. By introducing a new kind of recurrent in-
equality and using the probabilistic theory, not only the classical results on linear multistep meth-
ods are improved essentially and the “normal” growth of the accumulated round-off error on float-
ing-point machine is derived, but also a unified estimate for the total error of general multistep
method is given. Based on the results of error analysis, we rationally interpret the various phe-
nomena found in the numerical experiments in ref. [1], derive two universal relations which are
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independent of types of ODEs, initial values and numerical schemes and are in agreement with
the results in numerical experiments, and point out that the theoretical convergence and the nu-
merical convergence of numerical solution cannot take place simultaneously, i.e. the numerical
solution is not actually convergent. Further theoretical analyses give the mathematical expression
of the computational uncertainty principle. In the light of it, we expound that the two uncertain-
ties due to numerical method and calculation machine are two “adjoint” variables, and they can-
not decrease simultaneously to zero, and so we explain the root cause that there surly exist OS
and ECMT for numerical method under finite machine precision. In order to obtain more precisely
numerical solution with longer valid range, from the computational principle, there must be added
machine precision in the computations.

Besides, by the results of this paper, there are still some additional discussions about using
computer to study the problems of numerical simulation and prediction: (i) In practice, the com-
putational uncertainty principle points out that there is a limit to the ability of effective simulation
of computers. We must recognize this point. There is a limit to the ability of effective simulation
because computation errors are completely inevitable except for a zero measure set. The existence
of this limit is inherent and is independent of the objects simulated (more precisely except a zero
measure set) . The size of the limit, however, usually depends on the objects simulated. Once
the object studied and the machine precision used are given, the best ability of simulation which
can be achieved is determined. This limitation is also inherent and cannot be overcome by im-
proving the model describing the object or the data; improving the model describing the object or
the data only can make the ability of simulation gradually approach the best degree. (ii) Using
the computational uncertainty principle we can make simulations to the best. The computational
uncertainty principle on the one hand points out the limit of simulation ability, and on the other
hand, points out an optimal relation. The optimal relation gives a way to come up the best ability
of simulation. According to the relation, we must affirm which computational results are valid and
can be made sure, and which computational results are invalid and cannot be made certain, the
correct parts in numerical prediction results are thereby determined. (iii) Developing computers
with higher precision is a way to enhance the ability of effective computation. At present for the
various numerical methods in differential equations, all their kenels are the recurrent processes
step by step. There is surely MECT for this class of methods, and the integration results beyond
the time will be invalid, so the long-time behavior of system cannot be properly analyzed. Ac-
cording to the computational uncertainty principle, as long as machine precision is added, MECT
can be extended, so the ability of effective computation is raised. In a word, we are up against
the change of idea from the idealization of infinite precision to the reality of finite precision. In
the course of the change how to break through the computational uncertainty principle and to raise
the ability of long time numerical integration for ODEs is an important problem to be solved.

Acknowledgements This work was supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences in
the Resource Environment Field (KZCX1-203), Outstanding State Key Laboratory Project (Grant No. 49823002) , the National Nat-
ural Science Foundation of China ( Grant No. 49905007) , National Key Foundation Research Project on the Formation Mechanism and
Prediction Theory of Heavy Climate Disasters in China ((G1998040900, Part 1) and Innovation Project of IAPICAS (8-1301)

References

1. Li Jianping, Zeng Qingcun, Chou Jifan, Computational Uncertainty Principle in Nonlinear Ordinary Differential Equations 1.



74

SCIENCE IN CHINA (Series E) Vol. 44

10.
11.
12.

Numerical Results, Science in China, Ser. E, 2000, 43(5): 449

Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, New York: John Wiley, 1962, 1; 187.
Henrici, P., Error Propagation for Difference Methods, New York: John Whiley, 1963.

Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Englewood Cliffs, NJ: Prentice-Hall,
1971, 1; 72.

Hairer, E., Ngrsett, S. P., Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Berlin-
Heidelberg-New York: Springer-Verlag, 1993, 130.

Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, 2nd ed., Vol. 1, Berlin-Heidelberg-New York: Springer-Ver-
lag (reprinted in China by Beijing Wold Publishing Corporation) , 1998, 428.

Li Qingyang, Numerical Methods in Ordinary Differential Equations ( Stiff Problems and Boundary Value Problems) , in Chinese
Beijing: Higher Education Press, 1991, 1.

Li Ronghua, Weng Guochen, Numerical Methods in Differential Equations (in Chinese) , 3rd ed., Beijing: Higher Education
Press, 1996, 1.

Dahlquist, G., Convergence and stability in the numerical integration of ordinary differential equations, Math. Scandinavica,
1956, 4: 33.

Dahlquist, G., 33 years of numerical instability, Part I, BIT, 1985, 25: 188.

Heisenberg, W., The Physical Principles of Quantum Theory, Chicago: University of Chicago Press, 1930.

McMurry, S. M., Quantum Mechanics, London: Addison-Wesley Longman Ltd (reprined in China by Beijing World Publish-
ing Corporation) , 1998.



